A Hardware Architecture for Direct Generation of Multi-Variate Gaussian Random Numbers

نویسنده

  • David B. Thomas
چکیده

The multi-variate Gaussian distribution is used to model random processes with distinct pair-wise correlations, such as stock prices that tend to rise and fall together. Multi-variate Gaussian vectors with length n are usually produced by first generating a vector of n independent Gaussian samples, then multiplying with a correlation inducing matrix requiring O(n) multiplications. This paper presents a method of generating vectors directly from the uniform distribution, removing the need for an expensive scalar Gaussian generator, and eliminating the need for any multipliers. The method relies only on small ROMs and adders, and so can be implemented using just logic resources (LUTs and FFs), saving DSP and block-RAM resources for the numerical simulation that the multi-variate generator is driving. The new method provides a ten times increase in raw performance over the fastest existing FPGA generation method, and also provides a five times improvement in performance per resource over the most efficient existing method. Using this method a single 400MHz Virtex-5 FPGA can generate vectors ten times faster than an optimised CUDA implementation on a 1.2GHz GPU, and a hundred times faster than SIMD optimised software on a quad core 2.2GHz CPU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiplierless Algorithm for Multi-Variate Gaussian Random Number Generation in FPGAs

The multi-variate Gaussian distribution is used to model random processes with distinct pair-wise correlations, such as stock prices that tend to rise and fall together. Multi-variate Gaussian vectors with length n are usually produced by first generating a vector of n independent Gaussian samples, then multiplying with a correlation inducing matrix requiring O(n) multiplications. This paper pr...

متن کامل

Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers

Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...

متن کامل

Random variate generation for the generalized inverse Gaussian distribution

We provide a uniformly efficient and simple random variate generator for the entire parameter range of the generalized inverse gaussian distribution. A general algorithm is provided as well that works for all densities that are proportional to a log-concave function φ, even if the normalization constant is not known. It requires only black box access to φ and its derivative.

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Gaussian Noise Generation for Monte Carlo Simulations in Hardware

Hardware simulation offers the potential of improving execution speed by orders of magnitude over workstationor PC-based simulation. We describe a hardware Gaussian noise generator based on the Wallace method used as a key component in a hardware simulation system. The output of the noise generator accurately models a true Gaussian Probability Density Function (PDF) even at very high σ values. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010